W1.104

GUIDE LINES FOR SIZING AND SELECTION OF GEARBOXES

1 Helical Gear boxes

Reduction ratios and number of stages and efficiency

Reduction ratio	number of stages	efficiency %
1.6 – 6.3	1	99
6.3-22.4	2	98
14 - 112	3	97.5
112-630	4	97

2 Bevel Helical Gear Boxes

Reduction ratos and number of stages and efficiency

Reduction ratio	number of stages	
6.3 - 18	2	97.5
14 - 100	3	97
100 - 630	4	96.5

2 Selection of Gear boxes

Symbo	ol unit	description
Ν	r.p.m.	nominal transmission ratio
n_1	r.p.m.	input speed
n_2	r.p.m.	output speed
P_N	kw	nominal gear box rating
Pe	kw	absorbed power of driven machine
f		service factor
f_w		factor for ambient temp. ° c (Table3)
E _P	%	running period
P_{G1}		thermal capacity without additional
		Cooling at 20 ° c
P_{G2}		thermal capacity with fan
P_{G3}		thermal capacity with built in cooing
		Coil
P_{G4}		thermal capacity with cooling coli
		And fan
M_{K}	da Nm	starting or max. input torque
1	$N=\ n_1/\ n_2$	trasmission ratio

- 2 $P_{\rm N} > = P_e * f$
- $M_k n_1 / (P_N * 955) < / = 2.5$ 3

for f see Tables 1 & 2

4

Heating and cooling

- Gear box suitable $P_e < / = P_{G1} * f_w$ 1 without cooling when 2 with fan when $P_e < / = P_{G2} * f_w$ 3 with built in cooling $P_e < / = P_{G3} * f_w$ coil when 4 with cooling coil and $P_e < / = P_{G4} * f_w$ and fan
- 5 with external cooling $P_e > / = P_{G4} * f_w$ when
- Load Parameters 3

Table 1

Driven machine	load	hrs	Driven macchine	load	hrs
excavators			Fans, blowers		
Bucket chain	S		Axial fans	М	
elevator					
Caterpillar track	S		Centrifugal fans	Μ	
Bucket wheel	Μ		Centrifugsal blowers	G	
stacker					
Mining machinery			Cranes		
Concrete mixers	Μ		Traveling gear	Μ	
Crushers	S		Hoisting gear	Μ	
Briquetting press	S		Winches	G	
Chemical Industry			Mills		
Mixers	М		Hammer mills	S	
Agitators	М		Ball and tube mills	S	
Rotary dryer	М		Rod mills	S	
Centrifuge	М		Roller mills	S	
Cement kilns	S		Compressors		
Filter presses	Μ		Reciprocating	S	
Conveyors					
Bucket elevator	G/M				
Chain conveyor	G				
Apron conveyor	G/M				
Screw conveyor	G				
Belt conveyors	Μ				
Lifts	Μ				

G = uniform load; M = medium load; S = heavy loadDuty hours taken as 24 in most cases.

4 Service factor f

Table 2

Prime mover	Hrs of	Load parameter		
	Operation	-		
	Per day			
		G	М	S
Electric motor	3to 10	1.0	1.25	1.75
	10 to 24	1.25	1.5	2.0
Reciprocating	3 to 10	1.25	1.5	2.0
Engine 4-6 cylinder	10 to 24	1.50	1.75	2.25

5 Factor for Ambient Temp. f_w

Table 3

Type of	Ambient	Durat	ion of		
cooling	Temp. ° c	Operation per hr %			
		100	80	60	
Gearboxwithout	30	0.88	1.06	1.23	
Additional	40	0.75	0.9	1.05	
cooling	50	0.63	0.76	0.88	
Gear box with	30	0.9	1.26	1.26	
fan	40	0.8	0.96	1.12	
	50	0.7	0.84	0.98	
Gearbox with	30	0.9	1.08	1.26	
Cooling coil	40	0.85	1.02	1.19	
	50	0.8	0.96	1.12	
Gearbox with	30	0.92	1.1	1.29	
Fan and cooling	40	0.83	1.0	1.16	
coil	50	0.78	0.94	1.09	

6 Example of selection

Prime mover	electric motor
Speed n ₁	750 r.p.m.
Driven machine	ball mill
Rating	1000 kw
Girth gear /pinion	6:1
Pinion shaft n ₂	125 r.p.m.
Mill speed	20.8 r.p.m.
Working hours	20/day
Duty	continuous
Starts	1/hr
Running time /hr	100 %
Ambient temp.	40 ° c

Gearbox Helical To work out type and size of gear box Design Ratio $n_1/n_2 = 750 \ 125 = 6$ Select single reduction helical gear box Size of gear ox Operating factor from Tables 1 and 2 Ball mill; S, f for prime mover – electric motor running hours 20 = 2- $P_N = P_e * f$ = 1000 * 2 = 2000 kw From tables Actual reduction ratio 6.3 Size of gear unit 560 P_N of size 560 gearbox is 2150 kw which is > 2000 kw required without cooling Thermal capacity P_{G1} 1020 1750 With fan P_{G2} 1850 With cooling coil P_{G3} With coil and fan P_{G4} 2600 Check starting torque $M_{K} = 2546$ at 750 rpm and 1000 kw 2546*750 / (2150*955) = 0.9 Thermal capacity From table 3, fw = 0.75without cooling 1020 * 0.75 = 7650.8 with fan 1750 * 0.8 = 14000.85 with coil 1850 * 0.85 = 1572.50.83 with coil and fan $2600 \times 0.83 = 2158$ Thus gearbox with cooling fan should suffice

Source: Elecon and New Allenbury Manuals

For guidance only. Use Vendors' Brochures for sizing and selection
